二次最小二乘法matlab程序
如何用matlab进行参数估计?
如何用matlab进行参数估计?
一般都是基于最小二乘法的线性回归,其中有一元线性回归和多元线性回归,一元线性回归用:linefit函数,多元的话用regress函数,如果是非线性模型的话需要化简为线性的,如果不能化简,则需要自己根据模型建立非线性函数求解参数
如何用MATLAB求最小二乘法拟合曲线与原数据的最大偏差量?
是用多项式拟合么?设拟合阶数n p polyfit(x,y,n); y1 polyval(p,x); e y1-y; e1 abs(e); max(e1) 原理:x是自变量数组,y是原数据数组,n是你选择拟合的多项式阶数。
如n1,就是ya bx.n2,就是ya bx cx^2. p是最小二乘意义下的系数结果的数组,即[a,b,c]。然后把求得的p带回多项式计算曲线的y坐标y1, 让y1的数组元素对应减去原数据数组元素,得到误差数组e, 然后求绝对值再求最大值。你检查一下有没有错误。
matlabR2012a中如何进行数据拟合?
方法一、用数据拟合工具箱 Curve Fitting Tool
打开CFTOOL工具箱。在matlab的command window中输入cftool,即可进入数据拟合工具箱。
输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:
x [196,186, 137, 136, 122, 122, 71, 71, 70, 33]
y [0.012605 0.013115 0.016866 0.014741 0.022353 0.019278 0.041803 0.038026 0.038128 0.088196]
数据的选取。打开曲线拟合共工具界面,点击最左边的X data和Y data,选择刚才输入的数据,这时界面中会出现这组数据的散点图。
选择拟合方法,点击Fit
左侧results为拟合结果,下方表格为误差等统计数据。
方法二、用神经网络工具箱
1、打开神经网络工具箱,在command window内输入nftool,进入Neural fitting tool
2、导入数据,点击next,导入Inputs为x,Targets为y。
3、选择网络参数,点击next,选择训练集和测试集数量,点next,选隐藏层节点个数。
4、训练数据,点next,选train。
5、绘制拟合曲线,训练完成后电机plot fit
训练结果参数在训练完后自动弹出
神经网络工具箱可以用command写,请搜索关键字matlab 神经网络工具箱函数。
方法三、用polyfit函数写
polyfit函数是matlab中用于进行曲线拟合的一个函数。其数学基础是最小二乘法曲线拟合原理。曲线拟合:已知离散点上的数据集,即已知在点集上的函数值,构造一个解析函数(其图形为一曲线)使在原离散点上尽可能接近给定的值。
调用方法:apolyfit(xdata,ydata,n),
其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入。输出参数a为拟合多项式 ya1x^n ... anx a,共n 1个系数。
%例程Apolyfit(x,y,2)zpolyval(A,x)plot(x,y,r*,x,z,b)
方法四、自行写算法做拟合
请参考数值分析教科书,拟合、插值方法较多,算法并不复杂,灵活套用循环即可