近世代数和抽象代数的区别
数学的分类有多少种?
数学的分类有多少种?
大致有如下几大部分:
1,分析:包括数学分析,实变函数,泛函分析,复分析,调和分析,傅里叶分析,常微分方程,偏微分方程等;
2,数论:包括初等数论,代数数论,解析数论,数的几何,丢番图逼近论,模形式等;
3,代数:初等代数,高等代数,近世(或抽象)代数,交换代数,同调代数,李代数等;
4,几何:初等几何,高等几何,解析几何,微分几何,黎曼几何,张量分析,拓扑学等;
5,应用数学:这里面的分支太多了,例如概率统计,数值分析,运筹学,排队论等。
数学类专业都学啥?
数学分析,高等代数,解析几何,C ,离散数学,常微分方程,偏微分方程,抽象代数,复变函数,实变函数,泛函分析,数值计算等。
数学是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴(尤其是科学)的数学分枝,可以说是纯数学的相反。包括微分方程、向量分析、矩阵、傅里叶变换。
近世代数的研究意义?
代数意义是逻辑意义,靠理解和想象的;几何意义是落实到图像上的,不需要理解也可以直接从图上读出的,是直观的
近世代数是谁创立的?
伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
抽象代数包含群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数也是现代计算机理论基础之一。
线性代数和矩阵论有什么区别?
线性代数是高等代数的一部分,
矩阵论也可以算是高等代数的一部分,
线性代数和矩阵理论有些内容重复,
近世代数是高等代数的进一步抽象,
矩阵论本应在高等代数内讲清楚,但高等代数是大学低年级课程,像线性赋范空间的代数、某些代数结构的代数等等只能放到高年级或者研究生去讲,所以一般高等代数只讲部分矩阵论。