等价无穷小替换公式是什么
为啥不能分别替换等价无穷小?
为啥不能分别替换等价无穷小?
代数和或差的各个部分无穷小不能分别做替换。
一.等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不一定能随意单独代换或分别代换),变上限积分函数(积分变限函数)也可以用等价无穷小进行替换。
二.数学分析的基础概念指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。
三.用等价无穷小替换原则是:整个识式子中的乘除因子可用等价无穷小替换,而加减时一般不能用等价无穷小替换。这些等价无穷小的式子来源于泰勒公式展开式,一般取了前面的1到3项。如果函数足够平滑,在已知函数在某一点的各阶导数值的情况下,泰勒公式可以利用这些导数值来做系数,构建一个多项式近似函数。用得较多的是泰勒公式在x=0处的展开式。
两个无穷小相减时用等价无穷小代换的条件是什么?
首先,替换条件是自变量趋于0时才可以的。所以才叫等价无穷小 其次,如果结果减为0了,需要再展开更深一步,比如说分子sin(1/x)可以展成1/x,tan(1/x)也可以展开成1/x,但是二者相减为0了,需要多展开一步,sin(1/x)需要展开成1/x-1/(6*x^3) 同时tan(1/x)可展开成1/x 1/(3*x^3) 有时间看看泰勒级数那部分就明白了~
等价无穷大在什么条件下可以用?
条件:
1、被代换的量,在取极限的时候极限值为0;
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
事实上,等价无穷小是由泰勒公式推导而来,所以运用等价无穷小的结论就是,乘除可以整体换,而加减情况不能换,即使可以,那也是凑巧正确。下面给出什么情况下会“凑巧正确”。
使用等价无穷小有两大原则:
1、乘除极限直接用。
2、加减极限时看分子分母阶数。若使用等价无穷小后分子分母阶数相同,则可用;若阶数不同则不可用