钢材表面7种常见缺陷问题的简析
钢铁缺陷分析中成分偏析什么意思?
钢铁缺陷分析中成分偏析什么意思?
成分偏析是由于凝固或固态相变而导致的合金中化学成分的不均匀分布。
由凝固造成者称一次偏析,由固态相变产生者称二次偏析。按偏析分布的范围大小又分为宏观偏析和微观偏析二大类。按其分布的特征又分为晶内偏析、晶界偏析、枝晶偏析、胞晶偏析等,按偏析的稳定性来区分,又分为平衡偏析和非平衡偏析等。
据说某钢板上有麻点而不能用。什么叫麻点?哪里的规定不能用?
麻点是钢材表面缺陷之一,表现为产品表面呈凹凸不平的粗糙面,又称为麻面。
多连续成片,也有局部的或呈周期性分布的。
麻点是允许存在的缺陷,但其深度不得超过产品的厚度偏差的范围。
麻点产生的原因是:(1)成品孔或成品前孔轧槽磨损,或粘有破碎的氧化铁皮等物;(2)破碎的氧化铁皮被压入轧件表面后又脱落;(3)轧辊锈蚀;(4)坯料在加热过程中,表面被严重氧化。
防止和消除麻点的办法有:(1)换辊时,先检查轧辊,不使用严重锈蚀的轧辊,及时更换磨损的轧辊或孔型;(2)改进轧辊材质,保持轧槽冷却良好,采用工艺润滑剂(见塑性加工工艺润滑)以提高轧槽耐磨性能;(3)控制坯料加热操作,使炉内保持正压并减少氧化性气体。
对某些易氧化且氧化铁皮不易脱落的合金钢,应在钢坯表面加盖铁皮,保护加热;(4)在粗轧机前用高压水、压缩空气或铁刷子清除轧件表面的氧化铁皮.
钢材的破坏形式与哪些因素有关?
钢材的破坏分塑性破坏和脆性破坏两种。
脆性破坏:加载后,无明显变形,因此破坏前无预兆,断裂时断口平齐,呈有光泽的晶粒状。脆性破坏危险性大。
影响脆性破坏的因素
1.化学成分
2.冶金缺陷(偏析、非金属夹杂、裂纹、起层)
3.温度(热脆、低温冷脆)
4.冷作硬化
5.时效硬化
6.应力集中
7.同号三向主应力状态
1 ) 钢材质量差、厚度大:钢材的碳、硫、磷、氧、氮等元素含量过高,晶粒较粗,夹杂物等冶金缺陷严重,韧性差等;较厚的钢材辊轧次数较少,材质差、韧性低,可能存在较多的冶金缺陷。
(2) 结构或构件构造不合理:孔洞、缺口或截面改变急剧或布置不当等使应力集中严重。
(3) 制造安装质量差:焊接、安装工艺不合理,焊缝交错,焊接缺陷大,残余应力严重;冷加工引起的应变硬化和随后出现的应变时效使钢材变脆。
(4) 结构受有较大动力荷载或反复荷载作用:但荷载在结构上作用速度很快时(如吊车行进时由于轨缝处高差而造成对吊车梁的冲击作用和地震作用等),材料的应力-应变特性就要发生很大的改变。随着加荷速度增大,屈服点将提高而韧性降低。特别是和缺陷、应力集中、低温等因素同时作用时,材料的脆性将显著增加。
(5)在较低环境温度下工作:当温度从常温开始下降肘,材料的缺口韧性将随之降低,材料逐渐变脆。这种性质称为低温冷脆。不同的钢种,向脆性转化的温度并不相同。同一种材料,也会由于缺口形状的尖锐程度不同,而在不同温度下发生脆性断裂。
为了防止钢材的脆性断裂,可以从以下几个方面着手:
1、裂纹
当焊接结构的板厚较大时(大于25mm),如果含碳量高,连接内部有约束作用,焊肉外形不适当,或冷却过快,都有可能在焊后出现裂纹,从而产生断裂破坏。针对这个问题,把碳控制在0.22%左右,同时在焊接工艺上增加预热措施使焊缝冷却缓慢,解决了断裂问题。
焊缝冷却时收缩作用受到约束,有可能促使它出现裂纹。措施是:在两板之间垫上软钢丝留出缝隙,焊缝有收缩余地,裂纹就不会出现。
把角焊缝的表面作成凹形,有利于缓和应力集中。凹形表面的焊缝,焊后比凸形的容易开裂,原因是凹形缝的表面有较大的收缩拉应力,并且在45°截面上焊缝厚度最小。凸形缝表面拉力不大,而45°截面又有所增强,情况要好的多。在凹形焊缝开裂的条件下,改用凸形焊缝,就不再开裂。
2、应力
考察断裂问题时,应力 是构件的实际应力,它不仅和荷载的大小有关,也和构造形状及施焊条件有关。几何形状和尺寸的突然变化造成应力集中,使局部应力增高,对脆性破坏最为危险。施焊过程造成构件内的残余拉应力,也是不利的。因此,避免焊缝过于集中和避免截面突然变化,都有助于防止脆性断裂。
3、材料选用
为了防止脆性断裂,结构的材料应该具有一定的韧性。材料断裂时吸收的能量和温度有密切关系。吸收的能量可以划分为三个区域,即变形是塑性的、弹塑性的和弹性的。要求材料的韧性不低于弹性,以避免出现完全脆性的断裂,也没有必要高于弹塑性,对钢材要求太高,必然会提高造价。钢材的厚度对它的韧性也有影响。厚钢板的韧性低于薄钢板。
4、构造细部
发生脆性断裂的原因是存在和焊缝相交的构造缝隙,或相当于构造缝隙的未透焊缝。构造焊缝相当于狭长的裂纹,造成高度的应力集中,焊缝则造成高额残余拉应力并使近旁金属因热塑变形而时效硬化,提高脆性。低温地区结构的构造细部应该保证焊缝能够焊透。因此,设计时必须注意焊缝的施工条件,以保证施焊方便,能够焊透。