怎样计算两组数据之间的协方差
方差和协方差怎么计算?
方差和协方差怎么计算?
方差和协方差转换公式是Cov(x,y)E(XY)-E(X)*E(Y)。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。方差在统计描述和概率分布中各有不同的定义,并有不同的公式。
ma模型如何求自协方差函数?
自协方差在统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt] μt,那么自协方差为
其中 E 是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:
其中k是信号移动的量值,通常称为延时。如果用方差σ^2 进行归一化处理,那么 自协方差就变成了自相关系数R(k),即
有些学科中自协方差术语等同于自相关。(自协方差的概念) 自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。
两个独立同分布的正态分布的协方差怎么算?
cov(x,y)EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论
举例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) (1.1 1.9 3)/32
E(Y) (5.0 10.4 14.6)/310
E(XY)(1.1×5.0 1.9×10.4 3×14.6)/323.02
Cov(X,Y)E(XY)-E(X)E(Y)23.02-2×103.02
此外:还可以计算:D(X)E(X^2)-E^2(X)(1.1^2 1.9^2 3^2)/3 - 44.60-40.6 σx0.77
D(Y)E(Y^2)-E^2(Y)(5^2 10.4^2 14.6^2)/3-10015.44 σy3.93
X,Y的相关系数:
r(X,Y)Cov(X,Y)/(σxσy)3.02/(0.77×3.93) 0.9979
表明这组数据X,Y之间相关性很好!
扩展资料:
协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。
协方差与方差之间有如下关系:
D(X Y)D(X) D(Y) 2Cov(X,Y)
D(X-Y)D(X) D(Y)-2Cov(X,Y)
协方差与期望值有如下关系:
Cov(X,Y)E(XY)-E(X)E(Y)。
协方差的性质:
(1)Cov(X,Y)Cov(Y,X);
(2)Cov(aX,bY)abCov(X,Y),(a,b是常数);
(3)Cov(X1 X2,Y)Cov(X1,Y) Cov(X2,Y)。
由协方差定义,可以看出Cov(X,X)D(X),Cov(Y,Y)D(Y)。
协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:
定义
称为随机变量X和Y的(Pearson)相关系数。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差是衡量源数据和期望值相差的度量值。
方差在统计描述和概率分布中各有不同的定义,并有不同的公式。
在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。总体方差计算公式:
为总体方差,
为变量,
为总体均值,
为总体例数。
实际工作中,总体均数难以得到时,应用样本统计量代替总体参数,经校正后,样本方差计算公式:S^2 ∑(X-
) ^2 / (n-1)
S^2为样本方差,X为变量,
为样本均值,n为样本例数