第二类曲线积分公式的推导
两种曲线积分的区别?
两种曲线积分的区别?
很容易区分呀。第一类曲线积分表达式中是ds。第二类曲线积分表达式中是dx dy,或只有dx或只有dy。
另外,这两类曲线积分的物理意义是完全不同的,要想真正弄清这两类曲线积分的区别,建议好好看看书,把他们的物理意义弄明白了就很容易区分了。具体如下:
一类曲线是对曲线的长度,二类是对x,y坐标。怎么理解呢?告诉你一根线的线密度,问你线的质量,就要用一类。告诉你路径曲线方程,告诉你x,y两个方向的力,求功,就用二类。二类曲线也可以把x,y分开,这样就不难理解一二类曲线积分之间的关系了,它们之间就差一个余弦比例。
一二类曲面积分也是一样的。一类是对面积的积分,二类是对坐标的。告诉你面密度,求面质量,就用一类。告诉你x,y,z分别方向上的流速,告诉你面方程,求流量,就用第二类。同理,x,y,z方向也是可以分开的,分开了也就不难理解一二类曲面积分的关系了。
你要把以上两点都能理解的话,再去看高斯公式与流量,斯托克斯公式与旋度,这两个是线面体积分转化的两个公式,都理解了就没问题了。
学积分,重要的就是要理解:积分就等于是求积(乘法的积)。积分就是乘法。因为变量在连续变化,我不能直接乘,所以有了微积分来微元了再乘。一类线面积分就是函数和线面乘,二类线面积分就是函数和坐标乘。
第二型曲线积分,表达式中P(x,y)和Q(x,y)的意义是什么?
因为第二类曲线积分具有方向性,矢量函数F(x、y)在x轴,y轴的分量
曲面面积积分公式cos推导?
设A
点为曲面上一点,切平面为平面AGFE。dZ为FC。
平面AGFE的面积dS×cosθdxdy
θ为平面AGFE和平面ABCD的夹角。
谁能清楚的告诉我二重积分到底怎么算?
计算方法有两大类:
1、利用直角坐标计算
X型积分区域
Y型积分区域
2、利用极坐标计算(当被积函数出现x^2 y^2时优先考虑)
要点:
二重积分的计算一般要化成累次积分来计算
做题时要会利用积分区域的对称性
会利于被积函数的奇偶性
要会交换坐标系