定积分换元与不定积分换元的区别
定积分与不定积分的区别和联系如题?
定积分与不定积分的区别和联系如题?
定积分和不定积分的区别:
1、定积分和不定积分计算的内容不同:不定积分计算的是原函数(得出的结果是一个式子),定积分计算的是具体的数值(得出的借给是一个具体的数字)。
2、定积分和不定积分计算的运算内容不同:不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分。积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。
3、定积分和不定积分计算的应用不同:在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
定积分和不定积分的联系:定积分与不定积分的运算法则相同,并且积分公式,计算方法也相同。从牛顿-莱布尼茨公式看出,定积分与不定积分联系紧密,相互转换共用。
扩展资料:
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间(a,b)上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
我对定积分换元法这里不是很理解,哪位高手能通俗易懂的帮我讲清楚?
定积分的换元法,就其换元与不定积分完全相同。这里不同的是,定积分换元要相应换积分限。换积分限后的定积分,就不用象不定积分那样就后要反代换。可见定积分换元换限后,新的积分不再需要考虑原积分变量。这也是定积分换元法的优势之一。
简述定积分的概念?
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。
一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。