12-4的幼儿算数方法
12的四次算术根表示为?
12的四次算术根表示为?
12的四次方开算数根等于12的平方等于144
4× 2×1252列方程?
解这个方程我们首先要计算方程的左边2×1224然后再给方程两边减去24得4x28从而解得x7,把x7代入原方程,经检验是原方程的解
小学的乘除法公式是什么?
乘除法公式是
乘法公式:因数x因数积;积÷因数因数。
除法公式:被除数÷除数商;商x除数被除数;被除数÷商除数
四舍五入法怎么算?
四舍五入法顾名思义就是小于等于“4”即舍去,大于等于“5”即加入。也就是说看需要保留的位数的后一位,小于等于四即舍去,大于等于五则在前面一位加上“1”。
举个例子,假如说现在我们保留一位小数。
2.24通过四舍五入就是2.2,而2.25通过四舍五入之后则是2.3。
一年级至四年级的数学公式?
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式:
1 正方形
C周长 S面积 a边长
周长=边长×4
C4a
面积边长×边长
Sa×a
2 正方体
V:体积 a:棱长
表面积棱长×棱长×6
S表a×a×6
体积棱长×棱长×棱长
Va×a×a
3 长方形
C周长 S面积 a边长
周长(长 宽)×2
C2(a b)
面积长×宽
Sab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽 长×高 宽×高)×2
S2(ab ah bh)
(2)体积长×宽×高
Vabh
5 三角形
s面积 a底 h高
面积底×高÷2
sah÷2
三角形高面积 ×2÷底
三角形底面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积底×高
sah
7 梯形
s面积 a上底 b下底 h高
面积(上底 下底)×高÷2
s(a b)× h÷2
8 圆形
S面积 C周长 π d直径 r半径
(1)周长直径×π2×π×半径
Cπd2πr
(2)面积半径×半径×n
9 圆柱体
v:体积 h:高 s底面积 r:底面半径 c:底面周长
(1)侧面积底面周长×高
(2)表面积侧面积 底面积×2
(3)体积底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s底面积 r:底面半径
体积底面积×高÷3
和差问题的公式:
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
棱长总和:
长方体棱长和(长 宽 高)
正方体棱长和棱长×12
熟记下列正反比例关系:
正比例关系:
正方形的周长与边长成正比例关系
长方形的周长与(长 宽)成正比例关系
圆的周长与直径成正比例关系
圆的周长与半径成正比例关系
圆的面积与半径的平方成正比例关系
常用数量关系:
1.路程速度×时间 速度路程÷时间 时间路程÷速度
工作总量工作效率×工作时间 工作效率工作总量÷工作时间 工作时间工作总量÷工作效率
总价单价×数量 单价总价÷数量 数量总价÷单价
总产量单产量×面积 单产量总产量÷面积 面积总产量÷单产量
单位换算:
长度单位:
一公里1千米1000米 1米10分米 1分米10厘米 1厘米10毫米
面积单位:
1平方千米100公顷 1公顷100公亩 1公亩100平方米
1平方千米1000000平方米 1公顷10000平方米 1平方米100平方分米
1平方分米100平方厘米 1平方厘米100平方毫米
体积单位:
1立方千米1000000000立方米 1立方米1000立方分米 1立方分米1000立方厘米
1立方厘米1000立方毫米 1立方分米1升 1立方厘米1毫升 1升1000毫升
重量单位:
1吨1000千克 1千克1000克
时间单位:
一世纪100年 一年四季度 一年12月 一年365天(平年) 一年366天(闰年)
一季度3个月 一个月 3旬(上、中、下) 一个月30天(小月) 一个月31天(大月)
一星期7天 一天24小时 一小时60分 一分60秒
一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七个月)
一年中的小月:四月、六月、九月、十一月(四个月)
特殊分数值:
0.550% 0.25 25% 0.75 75%
0.2 20% 0.4 40% 0.6 60% 0.8 80%
0.12512.5% 0.375 37.5% 0.625 62.5% 0.875 87.5%
算术
1、加法交换律:两数相加交换加数的位置,和不变。 (2)你最敬重卑微者的哪一点,为什么?
2、加法结合律:a b b a
3、乘法交换律:a × b b × a
4、乘法结合律:a × b × c a ×(b × c)
5、乘法分配律:a × b a × c a × b c
6、除法的性质:a ÷ b ÷ c a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数 余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x ab c
分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
一个数除以分数,等于这个数乘以分数的倒数。
甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数 加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
比
什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/xk( k一定)或kxy
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y k( k一定)或k / x y
百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的换算。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
整除
如果c|a, c|b,那么c|(a±b)
如果,那么b|a, c|a
如果b|a, c|a,且(b,c)1, 那么bc|a
如果c|b, b|a, 那么c|a
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。
奇数与偶数
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
奇数≠偶数
小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
纯小数:个位是0的小数。
带小数:各位大于0的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414……
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
利润
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
内角和
边数—2乘180