线面关系的十大定理
证明线面垂直有几种方法?
证明线面垂直有几种方法?
证明线面垂直有五种方法证明线面垂直的常用方法有:
1、用判定定理。
2、与直线的垂面平行。
3、用面面垂直的性质定理。
4、同一法。
5、用活三垂线定理证线线垂直。
扩展资料:
直线与平面垂直定义:如果一条直线与平面内两条相交直线都垂直,那么这条直线与这个平面垂直。是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”
线面平行的性质定理?
直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行 线线平行”)
线面平行到线线平行判定定理?
一、线线平行
1、同位角相等两直线平行:在同一平面内,两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。也可以简单的说成:
2、内错角相等两直线平行:在同一平面内,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。也可以简单的说成:
3、同旁内角互补两直线平行。
二、线面平行
1、利用定义:证明直线与平面无公共点;
2、利用判定定理:从直线与直线平行得到直线与平面平行;
3、利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
三、面面平行
1、如果两个平面垂直于同一条直线,那么这两个平面平行。
2、如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行。
3、如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。
扩展资料:
平行平面间的距离处处相等。
已知:α∥β,AB⊥α,DC⊥α,且A、D∈α,B、C∈β
求证:ABCD
证明:连接AD、BC
由线面垂直的性质定理可知AB∥CD,那么AB和CD构成了平面ABCD
∵平面ABCD∩αAD,平面ABCD∩βBC,且α∥β
∴AD∥BC(定理2)
∴四边形ABCD是平行四边形
∴ABCD