线性代数怎么求方程组的解 线代解方程组有哪两种方法?

[更新]
·
·
分类:行业
2675 阅读

线性代数怎么求方程组的解

线代解方程组有哪两种方法?

线代解方程组有哪两种方法?

解线性方程组的方法大致可以分为两类:直接方法和迭代法。
直接方法是指假设计算过程中不产生舍入误差,经过有限次运算可求得方程组的精确解的方法;迭代法是从解的某个近似值出发,通过构造一个无穷序列去逼近精确解的方法。

线性代数如何解两个方程组?

设两个线性方程分别为
ya1*x b1
ya2*x b2
将第二式带去第一式就可以求出所求的值了!

线性代数有几种解线性方程组的方法?

1、克莱姆法则 用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,建立线性方程组的解与其系数和常数间的关系。
2、矩阵消元法 将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵 ,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。
当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。
对有解方程组求解,并决定解的结构。
这几个问题均得到完满解决:所给方程组有解,则秩(A)秩(增广矩阵);若秩(A)秩r,则rn时,有唯一解;rn时,有无穷多解;可用消元法求解。

已知方程的通解求方程的一般方法?

通解就是找到一个满足方程的解.
用小学初中的知识来做的话,这个时候我们就是要消元.
把x1用其他未知量表示出来带入其它方程化简,这个时候就少了一个未知量,少了一个方程.
再亦同理,把x2,x3.....带入其它方程化简,最后就剩下了一个方程,里面可能有多个量.
因为我们只要一个任意的解就可以了,所以这个时候你随便赋值未知量满足方程就可以.
回返带入得到一组未知量的解.这个就可以作为通解. (如果方程和未知量不多的具体题目中可以这么算)
线性代数课本里面的方法就是高斯消元法.
把方程进行排列之后,系数组成矩阵,从底部到高进行带入消减,(其实就类似于上面的过程)
最后得到一个k*k的未知量系数组成的矩阵,加上右边的数值组成增光矩阵.
这个时候就是一个k元一次方程组,消元可以得到唯一的解,是关于x1,x2,...,x(k)的.
再对x(k 1)到x(n)进行一个简单赋值,就可以得到一组通解.