笔算开方的正确方法
开方的正确方法和步骤?
开方的正确方法和步骤?
手动开平方的计算步骤:
1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;
2、根据左边第一段里的数,求得平方根的最高位上的数;
3、用第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数;
4、把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商;
5、用商的最高位数的20倍加上这个试商再乘以试商,如果所得的积小于或等于余数,试商就是平方根的第二位数,如果所得的积大于余数,就把试商减小再试;
6、用同样的方法,继续求平方根的其他各位上的数;
如遇开不尽的情况,可根据所要求的精确度求出它的近似值。笔算开平方运算很繁琐,在实际中应用较少。
如何手算开方?
笔算开n次方的方法:
1、把被开方的整数部分从个位起向左每隔n位为一段,把开方的小数部分从小数点第一位起向由每隔n位为一段,用撇号分开;
2、根据左边第一段里的数,求得开n次算术根的最高位上的数,假设这个数为a;
3、从第一段的数减去求得的最高位上数的n次方,在它们的差的右边写上第二段数作为第一个余数;
4、把n(10a)^(n-1)去除第一个余数,所得的整数部分试商(如果这个最大整数大于或等于10,就用9做试商);
5、设试商为b。如果(10a b)^n-(10a)^n小于或等于余数,这个试商就是n次算术根的第二位;如果(10a b)^n-(10a)^n大于余数,就把试商逐次减1再试,直到(10a b)^n-(10a)^n小于或等于余数为止。
6、用同样的方法,继续求n次算术跟的其它各位上的数(如果已经算了k位数数字,则a要取为全部k位数字)。
例如计算987654321987654321的五次算术根,就算到小数点后四位。 3 9 7 1. 1 9 2 9 5√987#3965432#3919876#3954321.00000#3900000#3900000#3900000
有谁会算平方根的?教我一下?
此乃八年级的数学
平方根表,初中怀念的,可以查,但是现在大家都可以用计算器了,这两样工具都没有,如何手动开平方呢先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析.根据两数和的平方公式,可以得到1156(30 a)^230^2 2×30a a^2,所以 1156-30^22×30a a^2,即 256(30×2 a)a,这就是说, a是这样一个正整数,它与30×2的和,再乘以它本身,等于256.为便于求得a,可用下面的竖式来进行计算:根号上面的数3是平方根的十位数.将 256试除以30×2,得4(如果未除尽则取整数位).由于4与30×2的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到 115634^2, 或√115634. 上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
开方的计算步骤1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是 4,即试商是4);5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3 4)×4256,说明试商4就是平方根的第二位数);6.用同样的方法,继续求平方根的其他各位上的数.如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值.