高等数学求极限方法洛必达法则
e的x次方的极限怎么用洛必达法则?
e的x次方的极限怎么用洛必达法则?
当x趋于无穷大时,ye的x次方没有极限。
因为lim[x-- ∞]e^x ∞,lim[x---∞]e^x0,所以当x趋于无穷大时,ye的x次方没有极限。
详细内容:
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
方法
①利用函数连续性:
(就是直接将趋向值带入函数自变量中,此时要要求分母不能为0)
②恒等变形
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
当然还会有其他的变形方式,需要通过练习来熟练。
③通过已知极限
特别是两个重要极限需要牢记。
④采用洛必达法则求极限
洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。
洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。
e^x一直求导当然一直是e^x,但是表达式的其他部分可能会随着求导,阶数慢慢降低,最后与e^x不同为无穷大的时候就无法再使用洛必达法则,这个时候也基本解出答案了。
洛必达法则是什么时候学的?
洛必达法则一般是在高等数学上册的求极限部分学习,在大一上学期学习高等数学的时候学到。
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。[1]
函数极限概念?
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
方法
①利用函数连续性:
(就是直接将趋向值带入函数自变量中,此时要要求分母不能为0)
②恒等变形
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
当然还会有其他的变形方式,需要通过练习来熟练。
③通过已知极限
特别是两个重要极限需要牢记。
④采用洛必达法则求极限
洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。
洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。