可导与连续之间的关系是怎样的 为什么导函数连续才能用洛必达法则?使用洛必达法则的前提条件是什么?

[更新]
·
·
分类:行业
4012 阅读

可导与连续之间的关系是怎样的

为什么导函数连续才能用洛必达法则?使用洛必达法则的前提条件是什么?

为什么导函数连续才能用洛必达法则?使用洛必达法则的前提条件是什么?

因为洛必达法则是对分数线上下的函数求导,而函数可导则必连续,因此连续函数才能用洛必达法则。
洛必达法则是在一定条件下,通过分子分母分别求导再求极限来确定未定式值的方法。两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。在求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。如果这两个条件都满足,接着求导并断求导之后的极限是否存在:如果存在,直接得到答案。
如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合。

可导推连续是函数连续还是导数连续?

导数连续形容的是导函数,导数连续的话原函数也连续
连续可导形容的是原函数。

连续性与可导性?

先看几个定义:
(1)连续点:如果函数在某一邻域内有定义,且x-x0时limf(x)f(x0),就称x0为f(x)的连续点。
一个推论,即yf(x)在x0处连续等价于yf(x)在x0处既左连续又右连续,也等价于yf(x)在x0处的左、右极限都等于f(x0)。
这就包括了函数连续必须同时满足三个条件:
(1)函数在x0 处有定义;
(2)x- x0时,limf(x)存在;
(3)x- x0时,limf(x)f(x0)。
初等函数在其定义域内是连续的。
(2)连续函数:函数f(x)在其定义域内的每一点都连续,则称函数f(x)为连续函数。
(3)连续性与可导性关系:连续是可导的必要条件,即函数可导必然连续;不连续必然不可 导;连续不一定可导。典型例子:含尖点的连续函数。

多元函数可导与可微与连续的关系?

可微,偏导数一定存在可微,函数一定连续可导,不一定连续。
可导与连续的关系:可导必连续,连续不一定可导;
可微与连续的关系:可微与可导是一样的;
可积与连续的关系:可积不一定连续,连续必定可积;
可导与可积的关系:可导一般可积,可积推不出一定可导。
扩展资料:
多元函数的本质是一种关系,是两个集合间一种确定的对应关系。这两个集合的元素可以是数;也可以是点、线、面、体;还可以是向量、矩阵等等。一个元素或多个元素对应的结果可以是唯一的元素,即单值的。也可以是多个元素,即多值的。
人们最常见的函数,以及目前我国中学数学教科书所说的“函数”,除有特别注明者外,实际上(全称)是一元单值实变函数。
例如,某种商品的市场需求量不仅仅与其市场价格有关,而且与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。