matlab怎么把数据转换为行向量
怎样使用matlab做曲线拟合?
怎样使用matlab做曲线拟合?
方法一、用数据拟合工具箱 Curve Fitting Tool
打开CFTOOL工具箱。在matlab的command window中输入cftool,即可进入数据拟合工具箱。
输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:
x [196,186, 137, 136, 122, 122, 71, 71, 70, 33]
y [0.012605 0.013115 0.016866 0.014741 0.022353 0.019278 0.041803 0.038026 0.038128 0.088196]
数据的选取。打开曲线拟合共工具界面,点击最左边的X data和Y data,选择刚才输入的数据,这时界面中会出现这组数据的散点图。
选择拟合方法,点击Fit
左侧results为拟合结果,下方表格为误差等统计数据。
方法二、用神经网络工具箱
1、打开神经网络工具箱,在command window内输入nftool,进入Neural fitting tool
2、导入数据,点击next,导入Inputs为x,Targets为y。
3、选择网络参数,点击next,选择训练集和测试集数量,点next,选隐藏层节点个数。
4、训练数据,点next,选train。
5、绘制拟合曲线,训练完成后电机plot fit
训练结果参数在训练完后自动弹出
神经网络工具箱可以用command写,请搜索关键字matlab 神经网络工具箱函数。
方法三、用polyfit函数写
polyfit函数是matlab中用于进行曲线拟合的一个函数。其数学基础是最小二乘法曲线拟合原理。曲线拟合:已知离散点上的数据集,即已知在点集上的函数值,构造一个解析函数(其图形为一曲线)使在原离散点上尽可能接近给定的值。
调用方法:apolyfit(xdata,ydata,n),
其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入。输出参数a为拟合多项式 ya1x^n ... anx a,共n 1个系数。
%例程Apolyfit(x,y,2)zpolyval(A,x)plot(x,y,r*,x,z,b)
方法四、自行写算法做拟合
请参考数值分析教科书,拟合、插值方法较多,算法并不复杂,灵活套用循环即可
请问matlab中的fittype函数怎么用?
用法为fittype(自定义函数,independent,自变量,coefficients,{系数1,系数2……});
注意:此处的数据必须为列向量的形式。
MATLAB可以利用MATLAB编译器和C/C 数学库和图形库,将自己的MATLAB程序自动转换为独立于MATLAB运行的C和C 代码。
允许用户编写可以和MATLAB进行交互的C或C 语言程序。另外,MATLAB网页服务程序还容许在Web应用中使用自己的MATLAB数学和图形程序。MATLAB的一个重要特色就是具有一套程序扩展系统和一组称之为工具箱的特殊应用子程序。
工具箱是MATLAB函数的子程序库,每一个工具箱都是为某一类学科专业和应用而定制的,主要包括信号处理、控制系统、神经网络、模糊逻辑、小波分析和系统仿真等方面的应用。