行列式常见类型及计算方法总结
n元齐次线性方程组有非零解则行列式为?
n元齐次线性方程组有非零解则行列式为?
首先,齐次线性方程组,肯定有零解。
如果系数矩阵行列式不等于0,则系数矩阵可逆,Ax0,等式左右同时左乘A逆,得到x0,
即只有零解。
否则(即系数矩阵行列式等于0时),有其他解(即非零解)。
扩展资料:
性质:
常数项全为0的n元线性方程组
称为n元齐次线性方程组。设其系数矩阵为A,未知项为X,则其矩阵形式为AX0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r,则它的方程组的解只有以下两种类型:
当rn时,原方程组仅有零解;
当rn时,有无穷多个解(从而有非零解)。
证明
对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若mn,则一定nr,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。
示例
依照定理n4m3一定是存在非零解。
对系数矩阵施行初等行变换:
最后一个矩阵为最简形,此系数矩阵的齐次线性方程组为:
令X4为自由变元,X1,X2,X3为首项变元。
令X4t,其中t为任意实数,原齐次线性方程组的解为
矩阵交换行列怎么用符号表示?
矩阵中行(列)互换不用变号。
矩阵变换是线性代数中矩阵的一种运算形式。
在线性代数中,矩阵的初等变换是指以下三种变换类型 :
1、交换矩阵的两行(对调i,j,两行记为ri,rj);
2、以一个非零数k乘矩阵的某一行所有元素(第i行乘以k记为ri×k);
3、把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素(第j行乘以k加到第i行记为ri krj)。
类似地,把以上的“行”改为“列”便得到矩阵初等变换的定义,把对应的记号“r”换为“c”。
矩阵的初等行变换与初等列变换合称为矩阵的初等变换
什么是行列式的奇偶排列?和顺序排列有何区别?
逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列. 在一个n阶排列中,所有逆序的总数就是排列的逆序数。如排列45312的逆序数为8。所以排列45312为偶排列。
一、排列的定义的理解:
①排列的定义中包含两个基本内容,一是取出元素;二是按照一定的顺序排列;
②只有元素完全相同,并且元素的排列顺序也完全相同时,两个排列才是同一个排列,元素完全相同,但排列顺序不一样或元素不完全相同,排列顺序相同的排列,都不是同一个排列;
③定义中规定了m≤n,如果mltn,称为选排列;如果mn,称为全排列;
④定义中“一定的顺序”,就是说排列与位置有关,在实际问题中,要由具体问题的性质和条件进行判断,这一点要特别注意;
⑤可以根据排列的定义来判断一个问题是不是排列问题,只有符合排列定义的说法,才是排列问题。
二、排列的判断:
判断一个问题是否为排列问题的依据是是否与顺序有关,与顺序有关且是从n个不同的元素中任取m个(m≤n)不同元素的问题就是排列问题,否则就不是排列的问题,而检验一个问题是否与顺序有关的依据就是变换不同元素的位置,看其结果是否有变化,若有变化就与顺序有关,就是排列问题;若没有变化,就与顺序无关,就不是排列问题.
三、写出一个问题中的所有排列的基本方法:
写出一个问题中的所有排列的基本方法是字典排序法或树形图法或框图法。
排列组合应用问题的解题策略:
1.捆绑法:把相邻的若干特殊元素“捆绑”成一个“大元素”,然后再与其余“普通元素”全排列,而后“松绑”,将特殊元素在这些位置上全排列,这就是所谓相邻问题“捆绑法”.
2.插空法:对于不相邻问题用插空法,先排其他没有要求的元素,让不相邻的元素插产生的空.
3.优先排列法:某些元素(或位置)的排法受到限制,列式求解时,应优先考虑这些元素,叫元素分析法,也可优先考虑被优待的位置,叫位置分析法.
4.排除法:这种方法经常用来解决某些元素不在某些位置的问题,先总体考虑,后排除不符合条件的。
5.特殊元素优先考虑,特殊位置优先安排的策略;
6.合理分类和准确分步的策略;
7.排列、组合混合问题先选后排的策略;
8.正难则反,等价转化的策略;
9相邻问题捆绑处理的策略;
10.不相邻问题插空处理的策略;
11.定序问题除法处理的策略;
12.分排问题直接处理的策略;
13.构造模型的策略,