洛必达法则必须上下同时求导吗 5?高中的导数题什么时候可以用洛必达法则?

[更新]
·
·
分类:行业
3204 阅读

洛必达法则必须上下同时求导吗

5?高中的导数题什么时候可以用洛必达法则?

5?高中的导数题什么时候可以用洛必达法则?

洛必达法则必须要满足三个条件:(1)分子分母可导;(2)分子分母必须同时是无穷小量或同时是无穷大量;(3)分子导数与分母导数比值的极限必须存在或为无穷大.利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限.比如利用泰勒公式求解.②洛必达法则可连续多次使用,直到求出极限为止.③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等.

二次洛必达法则?

洛必达法则的前提是,分子分母是零比零或者无穷比无穷型的,然后分子求导,分母求导

在线,一个题中为什么可以连续使用洛必达法则?

在运用洛必达法则之前,首先要完成两项任务:
一是分子分母的极限是否都等于零(或者无穷大);
二是分子分母在限定的区域内是否分别可导;如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。——

什么不能用洛必达法则求出?

当不存在时(不包括∞情形)就不能用洛必达法则。洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。这法则是由瑞士数学家约翰·伯努利所发现的。
大意为两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。
相关信息:
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。
因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。