怎么区分幂级数n-1是标准还是缺项
什么叫缺项级数?
什么叫缺项级数?
缺项级数就是缺项幂级数。
缺项幂级数是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。
缺项幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。
判断级数收敛的八种方法?
利用部分和数列判别法,
比较原则,
比式判别法,
根式判别法,
积分判别法,
以及拉贝判别法等。
对于正项级数,比较判别法是一个相当有效的判别法,通过找一个新正项级数,比较通项,如果原级数的通项小,新级数收敛,则原级数收敛; 如果新级数发散,原级数通项大,则原级数发散,通常在判别过程中使用其极限形式。
如何判断级数敛散性?
一、判定正项级数的敛散性;二、判定交错级数的敛散性;三、求幂级数的收敛半径、收敛区间和收敛域;四、求幂级数的和函数与数项级数的和;五、将函数展开为傅里叶级数。
一、判定正项级数的敛散性
1.先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;如果趋于零,则考虑其它方法。
2.再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,
3.用比值判别法或根值判别法进行判别,
4.再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等.
二、判定交错级数的敛散性
1.利用莱布尼茨判别法进行分析判定.
2.利用绝对级数与原级数之间的关系进行判定.
3.一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散.
4.有时可把级数通项拆分成两个,利用“收敛 发散发散”“收敛 收敛收敛”判定.
三、求幂级数的收敛半径、收敛区间和收敛域
1.若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域.
2.对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径.
四、求幂级数的和函数与数项级数的和
1.求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和.
2.求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值.
五、将函数展开为傅里叶级数
将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系。