正态分布两个方差大小怎么比较 两个正态分布相加减公式推导?

[更新]
·
·
分类:行业
3506 阅读

正态分布两个方差大小怎么比较

两个正态分布相加减公式推导?

两个正态分布相加减公式推导?

两个正态分布的任意线性组合仍服从正态分布(可通过求两个正态分布的函数的分布证明),此结论可推广到n个正态分布 。
例如:
设两个变量分别为X,Y,那么E(X Y)EX EY;E(X-Y)EX-EY
D(X Y)DX DY;D(X-Y)DX DY。
拓展资料:
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ 0,σ 1时的正态分布是标准正态分布。

正态分布和差运算?

正态分布的期望和方差为:
期望:ξ期望:Eξx1p1 x2p2 …… xnpn
方差:s2方差公式:s21/n[(x1-x)2 (x2-x)2 …… (xn-x)2]

两个正态分布怎么算?

只有相互独立的正态分布加减之后,才是正态分布。如果两个相互独立的正态分布X~N(, m2),Y~N(,n2),那么ZX±Y仍然服从正太分布,Z~N(±,m2 n2)。正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ 0,σ 1的正态分布

二元正态分布协方差计算?

cov(x,y)EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论
举例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) (1.1 1.9 3)/32
E(Y) (5.0 10.4 14.6)/310
E(XY)(1.1×5.0 1.9×10.4 3×14.6)/323.02
Cov(X,Y)E(XY)-E(X)E(Y)23.02-2×103.02
此外:还可以计算:D(X)E(X^2)-E^2(X)(1.1^2 1.9^2 3^2)/3 - 44.60-40.6 σx0.77
D(Y)E(Y^2)-E^2(Y)(5^2 10.4^2 14.6^2)/3-10015.44 σy3.93
X,Y的相关系数:
r(X,Y)Cov(X,Y)/(σxσy)3.02/(0.77×3.93) 0.9979
表明这组数据X,Y之间相关性很好!
扩展资料:
若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。
协方差与方差之间有如下关系:
D(X Y)D(X) D(Y) 2Cov(X,Y)
D(X-Y)D(X) D(Y)-2Cov(X,Y)
协方差与期望值有如下关系:
Cov(X,Y)E(XY)-E(X)E(Y)。
协方差的性质:
(1)Cov(X,Y)Cov(Y,X);
(2)Cov(aX,bY)abCov(X,Y),(a,b是常数);
(3)Cov(X1 X2,Y)Cov(X1,Y) Cov(X2,Y)。
由协方差定义,可以看出Cov(X,X)D(X),Cov(Y,Y)D(Y)。
分别为m与n个标量元素的列向量随机变量X与Y,这两个变量之间的协方差定义为m×n矩阵.其中X包含变量X1.X2......Xm,Y包含变量Y1.Y2......Yn,假设X1的期望值为μ1,Y2的期望值为v2,那么在协方差矩阵中(1,2)的元素就是X1和Y2的协方差。
两个向量变量的协方差Cov(X,Y)与Cov(Y,X)互为转置矩阵。
协方差有时也称为是两个随机变量之间“线性独立性”的度量,但是这个含义与线性代数中严格的线性独立性线性独立不同。
协方差在农业上的应用 :
农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。
比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。
当两个变量相关时,用于评估它们因相关而产生的对应变量的影响。
当多个变量独立时,用方差来评估这种影响的差异。
当多个变量相关时,用协方差来评估这种影响的差异。
常用分布的方差
1.两点分布
2.二项分布 X ~ B ( n, p )
引入随机变量Xi (第i次试验中A 出现的次数,服从两点分布),
3.泊松分布(推导略)
4.均匀分布
5.指数分布(推导略)
6.正态分布(推导略)
7.t分布:其中X~T(n),E(X)0;
8.F分布:其中X~F(m,n),
如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]E[X]E[Y]。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。
协方差为0的两个随机变量称为是不相关的