一阶导数等于零二阶导数小于零 函数的一阶、二阶导数都等于零,三阶导数不为零能否判断该点是极点?或者能否用四阶导数不为零判断该点?

[更新]
·
·
分类:行业
3939 阅读

一阶导数等于零二阶导数小于零

函数的一阶、二阶导数都等于零,三阶导数不为零能否判断该点是极点?或者能否用四阶导数不为零判断该点?

函数的一阶、二阶导数都等于零,三阶导数不为零能否判断该点是极点?或者能否用四阶导数不为零判断该点?

函数的一阶、二阶导数都等于零,三阶导数不为零可以判断该点绝对不是极点。如果三阶导数也是0而四阶导数不为0,那么该点肯定是极点。且大于0是极小点;小于0的极大点。

为什么二重根 导数为0?

二阶导数等于零的意义有很多,比如:当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点

二阶导数等于零?

答案二阶导数等于零的意义有很多,比如:当一阶导数等于0,而二阶导数大于0时,为极小值点。
内容简介
二阶导数等于零的意义有很多,比如:当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

切线方程的二阶导是零吗?

当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
二阶导数几何意义
(1)切线斜率变化的速度,表示的是一阶导数的变化率。
(2)函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。
这里以物理学中的瞬时加速度为例:
adv/dtd2x/dt2根据定义有
可如果加速度并不是恒定的,某点的加速度表达式就为:
alimΔt→0,Δv/Δtdv/dt(即速度对时间的一阶导数)
又因为vdx/dt,所以就有:
adv/dtd2x/dt2,即元位移对时间的二阶导数
将这种思想应用到函数中,即是数学所谓的二阶导数
f(x)dy/dx (f(x)的一阶导数)
f(x)d2y/dx2d(dy/dx)/dx (f(x)的二阶导数)
扩展资料:
二阶导数的意义
简单来说,一阶导数是自变量的变化率,二阶导数就是一阶导数的变化率,也就是一阶导数变化率的变化率。
连续函数的一阶导数就是相应的切线斜率。一阶导数大于0,则递增;一阶倒数小于0,则递减;一阶导数等于0,则不增不减。
而二阶导数可以反映图象的凹凸。二阶导数大于0,图象为凹;二阶导数小于0,图象为凸;二阶导数等于0,不凹不凸。
结合一阶、二阶导数可以求函数的极值。当一阶导数等于零,而二阶导数大于零时,为极小值点;当一阶导数等于零,而二阶导数小于零时,为极大值点;当一阶导数、二阶导数都等于零时,为驻点。