求级数的收敛域的方法 收敛算法?

[更新]
·
·
分类:行业
4884 阅读

求级数的收敛域的方法

收敛算法?

收敛算法?

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。数学名词
收敛数列
令{}为一个数列,且A为一个固定的实数,如果对于任意给出的b0,存在一个正整数N,使得对于任意nN,有|-A|b恒成立,就称数列{}收敛于A(极限为A),即数列{}为收敛数列。
函数收敛
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b0,存在c0,对任意x1,x2满足0|x1-x0|c,0|x2-x0|c,有|f(x1)-f(x2)|b。
收敛的定义方式很好的体现了数学分析的精神实质。
如果给定一个定义在区间i上的函数列,(x), (x) ,(x)......至un(x)....... 则由这函数列构成的表达式(x) (x) (x) ...... un(x) ......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数
对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数(x0) (x0) (x0) ...... un(x0) .... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)(x) (x) (x) ...... un(x) ......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)S(x)
记rn(x)S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)0
迭代算法的敛散性
1.全局收敛
对于任意的X0∈[a,b],由迭代式Xk 1φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk 1φ(Xk)在[a,b]上收敛于X*。
2.局部收敛
若存在X*在某邻域R{X| |X-X*|δ},对任何的X0∈R,由Xk 1φ(Xk)所产生的点列收敛,则称Xk 1φ(Xk)在R上收敛于X*。

如何判断级数敛散性?

一、判定正项级数的敛散性;二、判定交错级数的敛散性;三、求幂级数的收敛半径、收敛区间和收敛域;四、求幂级数的和函数与数项级数的和;五、将函数展开为傅里叶级数。
一、判定正项级数的敛散性
1.先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;如果趋于零,则考虑其它方法。
2.再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,
3.用比值判别法或根值判别法进行判别,
4.再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等.
二、判定交错级数的敛散性
1.利用莱布尼茨判别法进行分析判定.
2.利用绝对级数与原级数之间的关系进行判定.
3.一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散.
4.有时可把级数通项拆分成两个,利用“收敛 发散发散”“收敛 收敛收敛”判定.
三、求幂级数的收敛半径、收敛区间和收敛域
1.若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域.
2.对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径.
四、求幂级数的和函数与数项级数的和
1.求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和.
2.求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值.
五、将函数展开为傅里叶级数
将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系。