高中数学函数有几种解题方法 高中数学函数题型及解题技巧?

[更新]
·
·
分类:行业
3045 阅读

高中数学函数有几种解题方法

高中数学函数题型及解题技巧?

高中数学函数题型及解题技巧?

一、定义域
不同的函数的定义域是不同的,一定要把不同函数的定义域都记牢,这样做题才能清晰有思路,
常见几种函数的定义域:
(1)分数函数中分式的分母不为零;
(2)偶次方根下的数(或式)大于或等于零;
(3)指数式的底数大于零且不等于一;
(4)对数式的底数大于零且不等于一,真数大于零。
二、值域
求函数的值域也有不同的方法,最常见的有如下几种:
(1)配方法:求二次函数值域最基本的方法之一。例求函数yx2-2x 5,x属于[-1,2]的值域。这道题的最好方法是用配方法,通过完全平方公式配成y(x-1)2 4,然后根据定义域求最值。
(2)判别式法:对二次函数或者分式函数(分子或分母中有一个是二次)都可通用。
(3)反函数法:直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
(4)函数有界性法:直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。
三、单调性
单调性的重要作用就是推出该函数的导数是否大于0或者小于0,如下面题目的应用:已知a0,函数f(x)x3-ax在x1或等于1上是单调增函数,则a的最大值是()
这道题可以通过函数的导数解答:设f(x)的导函数为t(x)3x2-a,因为x大于等于1,所以a的最大值为3。
四、奇偶性
判断函数奇偶性主要要两种方法,分别是定义定义域法以及奇偶函数定义法,下面为大家一一介绍:
(1)定义域法:一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数。
(2)奇偶函数定义法:在给定函数的定义域关于原点对称的前提下,计算f(-x),然后根据函数的奇偶性的定义判断其奇偶性

函数最值问题解题技巧?

最值问题综合性强,几乎涉及高中数学各个分支,要学好各个数学分支知识,透彻地理解题意,能综合运用各种数学技能,熟练地掌握常用的解题方法,才能收到较好的效果。  
(1)代数法。代数法包括判别式法(主要是应用方程的思想来解决函数最值问题)配方法(解决二次函数可转化为求二次函数的最值问题)不等式法(基本不等式是求最值问题的重要工具,灵活运用不等式,能有效地解决一些给定约束条件的函数最值问题)④换元法(利用题设条件,用换元的方法消去函数中的一部分变量,将问题化归为一元函数的最值,以促成问题顺利解决,常用的换元法有代数换元法和三角换元法)。 
(2)数形结合法。数形结合法是数学中的一种重要的思想方法,即考虑函数的几何意义,结合几何背景,把代数问题转化为几何问题,解法往往显得直观、简捷。通过数与形之间的对应和转化来解题,有许多的优越性。将抽象的数学语言和直观的图形结合起来,借助几何图形活跃解题思路,使解题过程简化。有时函数最值也借助数形结合方法来求解。  
综上可知,函数最值问题内涵丰富,解法灵活,没有通用的方法和固定的模式,在解题时要因题而异;而且上述方法并非彼此孤立,而是相互联系、相互渗透的,有时一个问题需要多法并举,互为补充,有时一个题目又会有多种解法。因此,解题的关键在于认真分析和思考,因题而异地选择恰当的解题方法,当一题有多种解法时,当然应该注意选择最优解法。