怎么判断两个向量组等价 两个向量组如何等价?需要什么条件?

[更新]
·
·
分类:行业
5113 阅读

怎么判断两个向量组等价

两个向量组如何等价?需要什么条件?

两个向量组如何等价?需要什么条件?

向量组等价充要条件:两个向量组可以互相线性表示。
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)R(B)R(A,B)。
区别:
(一)含义不同
1、向量组是由若干同维数的列向量(或同维数的行向量)组成的集合。
2、矩阵是一个按照长方阵列排列的复数或实数集合,由向量组构成。

向量组等价有什么性质?

向量组等价性质是等价的向量组的秩相等,但是秩相等的向量组不一定等价。等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价,两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。

两矩阵不同型可能等价吗?

在代数中,因为如果两个向量组等价,则他们有相对的秩。而向量组的秩就是和他对应的矩阵的秩。所以两个向量组等价时他们对应矩阵的秩相等。向量组等价,是向量组可以相互线性表示。与两个向量组的最大无关组可以相互线性表示是充要条件。显然,两个向量组的秩相同,是两个向量组的最大无关组可以相互线性表示的必要不充分条件。
而两个矩阵等价,只能推出这两个向量组的秩相同,是两个向量组最大无关组可以相互线性表示的必要条件。

ab等价秩一定相等吗?

两个矩阵秩相同不可以说明两个矩阵等价。 矩阵秩相同只是两个矩阵等价的必要条件;两个矩阵秩相同可以说明两个矩阵等价的前提是必须有相同的行数和列数,即同型。 A,B矩阵同型(行数列数相同)时,有以下等价结论: 【r(A)r(B)】 等价于 【A、B矩阵等价】 等价于 【PAQB,其中P、Q可逆】。 A与B等价 ←→ A经过初等变换得到B ←→ PAQB,其中P,Q可逆 ←→ r(A)r(B),且A与B是同型矩阵。

线性代数中两个向量组等价是什么意思?

两个向量组可以互相线性表出,即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合。
向量组等价的基本判定是:两个向量组可以互相线性表示。
需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是
R(A)R(B)R(A,B),
其中A和B是向量组A和B所构成的矩阵
扩展资料:
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是
R(A)R(B)R(A,B),
其中A和B是向量组A和B所构成的矩阵。
(注意区分粗体字与普通字母所表示的不同意义)
或者说:两个向量组可以互相线性表示,则称这两个向量组等价。
注:
1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。
2、任一向量组和它的极大无关组等价。
3、向量组的任意两个极大无关组等价。
4、两个等价的线性无关的向量组所含向量的个数相同。
5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。
两个向量组可以互相线性表出, 即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合。