一元函数的导数及应用知识点总结
偏导数和偏导数的导数?
偏导数和偏导数的导数?
一、定义不同
导数,是对含有一个自变量的函数进行求导。
偏导数,是对含有两个自变量的函数中的一个自变量求导。
二、几何意义不同
函数yf(x)在x0点的导数f(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
偏导数 fx(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 fy(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 zf(x,y) 的偏导数 fx(x,y) 与 fy(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 zf(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:fxx,fxy,fyx,fyy。
三、求法不同
导数
1、直接法:由高阶导数的定义逐步求高阶导数。
一般用来寻找解题方法。
2、高阶导数的运算法则:
3、间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法。
当函数 zf(x,y) 在 (x0,y0)的两个偏导数 fx(x0,y0) 与 fy(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
扩展资料
求导公式
1、yc(c为常数) y0
2、yx^n ynx^(n-1)
3、ya^x ya^xlna
4、ye^x ye^x
5、ylogax ylogae/x
6、ylnx y1/x
7、ysinx ycosx
8、ycosx y-sinx
9、ytanx y1/cos^2x
10、ycotx y-1/sin^2x
11、yarcsinx y1/√1-x^2
12、yarccosx y-1/√1-x^2
13、yarctanx y1/1 x^2
14、yarccotx y-1/1 x^2
一次导数的定义?
一般地,假设一元函数 yf(x )在 x0点的附近(x0-a ,x0 a)内有定义,当自变量的增量Δx x-x0→0时函数增量 Δyf(x)-f(x)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率),记作f′(x0),即
f′(x0)Δy/Δx (Δx→0)
若极限为无穷大,称之为无穷大导数。
若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f′,称之为f的导函数,简称为导数。