怎么求一个矩阵的秩例子 二阶矩阵的秩怎么算?

[更新]
·
·
分类:行业
3946 阅读

怎么求一个矩阵的秩例子

二阶矩阵的秩怎么算?

二阶矩阵的秩怎么算?

二阶矩阵的秩要么是0,要么是1,要么是2,看情况

矩阵的秩最快求法?

矩阵的秩计算公式:
A(aij)m×n
按照初等行变换原则把原来的矩阵变换为阶梯型矩阵,总行数减去全部为零的行数即非零的行数就是矩阵的秩了。
用初等行变换化成梯矩阵,梯矩阵中非零行数就是矩阵的秩。
扩展资料
  矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的`极大数。通常表示为r(A),rk(A)或rank A。
  在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数

matlab怎么求系数矩阵的秩?

会一个 A[3,4,-7,-12;5,-7,4,2;1,0,8,-5;-6,5,-2,10]; b[4;-3;9;-8]; xA x -1.4841 -0.6816 0.5337 -1.2429

上三角矩阵的秩怎么求?

在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。上三角矩阵的对角线左下方的系数全部为零,下三角矩阵的对角线右上方的系数全部为零。三角矩阵可以看做是一般方阵的一种简化情形。比如,由于带三角矩阵的矩阵方程容易求解,在解多元线性方程组时,总是将其系数矩阵通过初等变换化为三角矩阵来求解;又如三角矩阵的行列式就是其对角线上元素的乘积,很容易计算。有鉴于此,在数值分析等分支中三角矩阵十分重要。
一个可逆矩阵A可以通过LU分解变成一个下三角矩阵L与一个上三角矩阵U的乘积。

如何求一个矩阵的秩?

通过初等行变换法,将矩阵化成阶梯矩阵,阶梯矩阵非零行(零行就是全是零的行,非零行就是不全为零的行)的个数就是秩。
初等变换的形式:
1、以P中一个非零的数乘矩阵的某一行;
2、把矩阵的某一行的c倍加到另一行,这里c是P中的任意一个数;
3、互换矩阵中两行的位置。
一般来说,一个矩阵经过初等行变换后就变成了另一个矩阵,当矩阵A经过初等行变,换变成矩阵B时可以证明:任意一个矩阵经过一系列初等行变换总能变成阶梯型矩阵。
扩展资料:
矩阵的秩的性质:
1、设矩阵A(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
2、矩阵的行秩,列秩,秩都相等。
3、初等变换不改变矩阵的秩。
4、矩阵的乘积的秩Rabltmin{Ra,Rb}
5、当r(A)ltn-2时,最高阶非零子式的阶数ltn-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。