弗兰克赫兹实验电流峰值为何增大 弗兰克赫兹实验说明了什么?

[更新]
·
·
分类:贸易
4019 阅读

弗兰克赫兹实验电流峰值为何增大

弗兰克赫兹实验说明了什么?

弗兰克赫兹实验说明了什么?

弗兰克—赫兹实验证明原子内部结构存在分立的定态能级,也就是验证了原子能级的存在。
原子能级的含义是指原子的能量不是连续的,而是一些分立的值。如果是这样的话,原子就只能吸收特定数量的能量(等于原子某两个能级间的差值),而弗兰克-赫兹实验正是观察到了这一点。
这个事实直接证明了汞原子具有玻尔所设想的那种“完全确定的、互相分立的能量状态”,是对玻尔的原子量子化模型的第一个决定性的证据。

弗兰克赫兹实验是如何观测到原子能级变化的

利用原子吸收电子的能量而激发来测量出原子能级的。
当原子刚好吸收电子的能量激发后,电子失去能量从而没有足够的能量到达对面的极板上,于是电流将有一个突降。同样的,当电子的能量是激发能量的n倍时都有一个电流突降点,测出这些突降点的电压差,也就是F-H管的第一激发电位,就可以求出电子损失的能量,从而知道原子的能级差。

弗兰克赫兹实验误差分析?

(1)温度的微小变化引起的误差;
(2)读数时的视觉误差;(3)仪器自身的误差。开始阶段电流变化不明显,误差可能较大。
弗兰克-赫兹实验在本实验中可观测到电子与汞蒸汽原子碰撞时的能量转移的量子化现象,测量汞原子的第一激发电位,从而加深对原子能级概念的理解。
弗兰克-赫兹实验为能级的存在提供了直接的证据,对玻尔的原子理论是一个有力支持。

弗兰克赫兹实验为什么加反向电压?

灯丝电压的改变只会影响激发出的电子数目,而由波尔理论知第一激发电势是固定的,与灯丝电压无关。
证明了汞原子具有玻尔所设想的那种“完全确定的、互相分立的能量状态”,是对玻尔的原子量子化模型的第一个决定性的证据。
当加速电压很低,小于 4.9伏特V时,随着电压的增加,抵达阳极的电流也平稳地单调递增。当电压在 4.9 伏特时,电流猛烈地降低,几乎降至 0 安培。继续增加电压。再一次,同样地,电流也跟随着平稳地增加,直到电压达到 9.80伏特。
扩展资料:
当电压很低时,被加速的电子只能获得一点点能量。他们只能与水银原子进行纯弹性碰撞。这是因为量子力学不允许一个原子吸收任何能量,除非碰撞能量大于将电子跃迁至较高的能量量子态所需的能量。
由于是纯弹性碰撞,系统内的总动能大约不变。又因为电子的质量超小于水银原子的质量,电子能够紧紧地获取大部分的动能。
增加电压会使电场增加,刚从阴极发射出来的电子,感受到的静电力也会加大。电子的速度会加快,更有能量地冲向栅极。所以,更多的电子会冲过栅极,抵达阳极。因此安培计读到的电流也会单调递增。