高等数学通解特解公式
高阶常系数线性方程通解和特解?
高阶常系数线性方程通解和特解?
通解就是对所有的条件都适用,特解就是在一个或者多个条件限制下得到的解。
通解是这个方程所有解的集合,也叫作解集,特解是这个方程的所有解当中的某一个,也就是解集中的某一个元素。例如通解得ykx(通解),y2x(特解)。
对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。
扩展资料:
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。
物理中经常会用到,被称作亥姆霍兹方程,它的解中具有两个常数, 取某个特定值时所得到的解称为方程的特解。例如y6*cos(x) 7*sin(x)是该方程的一个特解。
高数通解公式三种情况?
特征方程为s^2-40, s2,s-2,所以通解为c1 e^(2x) c2e^(-2x)
设特解为ke^x,则yke^x, y-4y(k-4)e^x, k5
所以解为c1 e^(2x) c2e^(-2x) 5e^x
非齐次的特解
设y*e^(-x)(acosx bsinx)
y*-e^(-x)(acosx bsinx) e^(-x)(-asinx bcosx)
e^(-x)(-acosx bcosx-bsinx-asinx)
e^(-x)[(-a b)cosx-(a b)sinx]
y*-e^(-x)[(-a b)cosx-(a b)sinx] e^(-x)[(a-b)sinx-(a b)cosx]
e^(-x)(-2acosx-2bsinx)
定义
对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解或者部分解的统一形式,称为通解(general solution)。对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。