spss中回归方程的建模方法
建立线性回归的理由?
建立线性回归的理由?
在统计学中,线性回归(LinearRegression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。)
回归分析中有多个自变量:这里有一个原则问题,这些自变量的重要性,究竟谁是最重要,谁是比较重要,谁是不重要。所以,spss线性回归有一个和逐步判别分析的等价的设置。
原理:是F检验。spss中的操作是“分析”~“回归”~“线性”主对话框方法框中需先选定“逐步”方法~“选项”子对话框
如果是选择“用F检验的概率值”,越小代表这个变量越容易进入方程。原因是这个变量的F检验的概率小,说明它显著,也就是这个变量对回归方程的贡献越大,进一步说就是该变量被引入回归方程的资格越大。究其根本,就是零假设分水岭,例如要是把进入设为0.05,大于它说明接受零假设,这个变量对回归方程没有什么重要性,但是一旦小于0.05,说明,这个变量很重要应该引起注意。这个0.05就是进入回归方程的通行证。
下一步:“移除”选项:如果一个自变量F检验的P值也就是概率值大于移除中所设置的值,这个变量就要被移除回归方程。spss回归分析也就是把自变量作为一组待选的商品,高于这个价就不要,低于一个比这个价小一些的就买来。所以“移除”中的值要大于“进入”中的值,默认“进入”值为0.05,“移除”值为0.10
如果,使用“采用F值”作为判据,整个情况就颠倒了,“进入”值大于“移除”值,并且是自变量的进入值需要大于设定值才能进入回归方程。这里的原因就是F检验原理的计算公式。所以才有这样的差别。
结果:如同判别分析的逐步方法,表格中给出所有自变量进入回归方程情况。这个表格的标志是,第一列写着拟合步骤编号,第二列写着每步进入回归方程的编号,第三列写着从回归方程中剔除的自变量。第四列写着自变量引入或者剔除的判据,下面跟着一堆文字。
这种设置的根本目的:挑选符合的变量,剔除不符合的变量。
注意:spss中还有一个设置,“在等式中包含常量”,它的作用是如果不选择它,回归模型经过原点,如果选择它,回归方程就有常数项。这个选项选和不选是不一样的。
在线性回归中
spss线性回归分析解读?
一般来说线性回归分析报告包含以下三个方面:
一、模型摘要,摘要告诉我们模型的拟合性如何。
二、方差分析,方差分析的本质是检测r平方是否显著大于零。
三、回归分析,回归系数表格列出了输出模型的偏回归系数估计值,非标准化系数表示各变量的拟合系数。
纳入那些自变量进行回归预测是由研究者根据专业和经验结合统计结果决定。而不是单单根据统计结果决定,当自变量较多需要筛选自变量时,不同的筛选方法,也会得到不同的结果。