初中数学公式汇总一览表
初中数学公式法?
初中数学公式法?
完全平方公式:(a b)^2a^2 2ab b^2 (a-b)^2a^2-2ab b^2;平方差公式:(a b)(a-b)a^2-b^2。
初一数学配方公式?
一般步骤是:
1 化二次项系数为1用二次项系数去除方程两边,将方程化为x^2 px q0的形式
2 移项把常数项移至方程右边,将方程化为x^2 px-q的形式
3配方方程两边同时加上“一次项系数一半的平方”,是方程左边成为含有未知数的完全平方形式,右边是一个常数
4 有平方根的定义,可知
(1) 当p^2/4-qgt0时,原方程有两个实数根
(2) 当p^2/4-q0,原方程有两个相等的实数根(二重根)
(3) 当p^2/4-qlt0,原方程无实根。
初中数学课外公式?
1、欧拉(Euler)线:
同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半
2、九点圆:
任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半.
3、费尔马点:
已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点.
4、海伦(Heron)公式:
在△ABC中,边BC、CA、AB的长分别为a、b、c,若p= (a+b+c),则△ABC的面积S
5、塞瓦(Ceva)定理:
在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则 ;其逆亦真
6、密格尔(Miquel)点:
若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点.
7、葛尔刚(Gergonne)点:
△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点.
8、西摩松(Simson)线:
已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线.
9、黄金分割:
把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项,这样的分割称为黄金分割
10、勾股定理:
即直角三角形两直角边的平方和等于斜边的平方.这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理.
11、笛沙格(Desargues)定理:
已知在△ ABC与△A#39B#39C#39中,AA#39、BB#39、CC#39三线相交于点O,BC与B#39C#39、CA与C#39A#39、AB与A#39B#39分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真.
12、摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则三角形DDE是正三角形,这个正三角形称为摩莱三角形.
13、帕斯卡(Paskal)定理:已知圆内接六边形ABCDEF的边AB、DE延长线交于点G,边BC、EF延长线交于点H,边CD、FA延长线交于点K,则H、G、K三点共线
14、托勒密(Ptolemy)定理:
在圆内接四边形中,AB?CD+AD?BC=AC?BD
15、阿波罗尼斯(Apollonius)圆 一动点P与两定点A、B的距离之比等于定比m:
n,则点P的轨迹,是以定比m:
n内分和外分定线段的两个分点的连线为直径的圆,这个圆称为阿波罗尼斯圆,简称“阿氏圆”
16、梅内劳斯定理
17、布拉美古塔(Brahmagupta)定理:
在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边