几何画板绘制抛物线 几何画板的轨迹不能平移吗?

[更新]
·
·
分类:行业
3895 阅读

几何画板绘制抛物线

几何画板的轨迹不能平移吗?

几何画板的轨迹不能平移吗?

这个有多种方法,我这里说两种以抛物线为例:
方法一:根据原抛物线方程,计算出平移后的抛物线方程,绘制新函数即可。
方法二:
1、画一条线段,作为平移的方向,选中两个端点,点“变换→标记向量”
2、在原抛物线上任取一点,选中该点,点“变换→平移”
3、选中抛物线上的点和平移得到的点,点“构造→轨迹”
4、隐藏不需要的东西即可。

抛物线的方程 ?

抛物线方程
抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。
抛物线方程
抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。

抛物线是什么图形?

抛物线(圆锥曲线之一)
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。

cos和sin怎么做抛物线?

极坐标:
在平面直角坐标系上的点可以用横坐标和纵坐标来表示
当然也可以以其他形式来表示
设点A,A距离原点的距离为ρ(有些书上用r表示)
而A点与原点的连线和X轴正半轴所成的夹角记为θ
因此在平面直角坐标系上的点可以和极坐标上的点
形成一一对应的关系
由三角几何关系可知
xρcosθ;y=ρsinθ
抛物线:ya(x-b)∧2 c
极坐标为ρsinθa(ρcosθ-b)∧2 c
简单抛物线yx∧2
极坐标ρsinθ(ρcosθ)∧2 →sinθρ(1-sinθ)∧2
也就是把直角坐标里的x换为ρcosθ
y换为ρsinθ
就可以得到相应的极坐标方程
除了极坐标代换还有
1.一般极坐标代换
2.球面坐标代换
3.柱面坐标代换
4.自然坐标
5.一般坐标代换
所有的坐标代换都可归于
一般坐标代换