群的生成元元素怎么求 可逆元的定义?

[更新]
·
·
分类:行业
2391 阅读

群的生成元元素怎么求

可逆元的定义?

可逆元的定义?

单位又被称为可逆元。在数学里,于一(有单位的)环 的可逆元,即一元素 内的 ,其中 是 的可逆元组成了一于乘法下的群的可逆元群。可逆元群U(R)有时亦被标记成R*或R×。
在一可交换单作环R内,可逆元群U(R)以乘法作用于R上头。此一作用的轨道(orbit)被称为结合集合;换句话说,存在一于R上的等价关系 ~ ,且当r~s时,表示存在一可逆元u使得rus。
U是一由环范畴至群范畴的函子:每一个环同态 f : R → S 都可导出一群同态U(f) : U(R) → U(S),当f会将可逆元映射至可逆元时。此一函数子有为整数群环结构的左伴随。
一个环R是一个除环当且仅当R* R {0}。

关于群的定义和定义证明(数学问题)?

群是一种特殊的代数系统,其二元运算可结合,有幺元,每个元素都有逆元,或者说,群上一个每个元素都有逆元的独异点。
掌握判断一个代数系统是否为群的方法。领会群的几种性质:幺元是唯一的,每个元素有逆元,每个元素都可逆,如果群中元素多于一个,则一定没有零元,关于方程的可解性。熟记群的运算性质,领会群中元素负指数幂的概念,掌握指数幂的运算法则。理解元素的阶的概念,有限群中每个元素的阶都是有限的且不会超过群的阶。掌握利用群的运算表判断群的幺元、每个元素的逆元的方法。

ord计算原根里的d怎么找到?

原根,是一个数学符号。
原根的性质
1)可以证明,如果正整数(a,m) 1和正整数 d 满足a^d≡1(mod m),则 d 整除 φ(m)。因此Ordm(a)整除φ(m)。在例子中,当a 3时,我们仅需要验证 3 的 1 、2、3 和 6 次方模 7 的余数即可。
2)记δ Ordm(a),则a^1,……a^(δ-1)模 m 两两不同余。因此当a是模m的原根时,a^0,a^1,……a^(δ-1)构成模 m 的简化剩余系。
3)模m有原根的充要条件是m 1,2,4,p,2p,p^n,其中p是奇质数,n是任意正整数。
4)对正整数(a,m) 1,如果 a 是模 m 的原根,那么 a 是整数模n乘法群(即加法群 Z/mZ的可逆元,也就是所有与 m 互素的正整数构成的等价类构成的乘法群)Zn的一个生成元。由于Zn有 φ(m)个元素,而它的生成元的个数就是它的可逆元个数,即 φ(φ(m))个,因此当模m有原根时,它有φ(φ(m))个原根。
举例:设m 7,则φ(7)等于6。
解答:设a 2,由于2^38≡1(mod 7),2^664≡1(mod7),而2!3,2^3≡2^6(mod7),所以 2 不是模 7 的一个原根。设a 3,由于3^1≡3(mod 7),3^2≡2(mod 7),3^3≡6(mod 7),3^4≡4(mod 7),3^5≡5(mod 7),3^6≡1(mod 7),所以 3 是模 7 的一个原根。
补充一点,根据原根的性质1,只需要验证3^1,3^2,3^3,3^6即可,这样可以简化运算